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Review 
Physical properties of mixed crystals of alkali 
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D. B. S I R D E S H M U K H ,  K. SRINIVAS 
Physics Department, Kakatiya University, Warangal 506009, India 

The physical properties of mixed crystals of alkali halides are reviewed. The properties 
considered are experimentally determined quantities like the lattice constants, the 
compressibility, the elastic constants, thermal expansion, specific heats, Debye-Waller factors, 
dielectric constant, refractive index, IR spectra and Raman spectra and also some calculated 
solid-state parameters like Debye temperatures and lattice energies. A critical analysis of 
composition dependence shows four groups designated as follows: Type A, properties which 
vary linearly with composition; Type B, properties which vary slightly non-linearly with 
composition; Type C, properties which depend highly non-linearly on composition with the 
values for mixed crystals exceeding the values for end members; and Type D, properties which 
are peculiar to the mixed crystals and are not shown by the parent crystals. Most of the 
physical properties belong to Types A or B. Variation of Type C is shown only by properties 
affected by differences in ion size like the Debye-Waller factor and the microhardness. 
Properties which are symmetry-dependent like the first-order Raman spectrum and the IR 
spectra are of Type D. Attention is drawn to areas where further work is needed. 

Nomencla ture  
a Lattice constant H Heat of formation 

A Madelung constant K Bulk modulus 
c~ Coefficient of expansion ~ Compressibility 
b Repulsion constant /~ Reduced mass 
B Debye-Waller factor r Interionic spacing 

CI 1 ) R Refractive index 

C~2 ~ Elastic constants of a cubic crystal T Temperature 
C44 j ~ Debye temperature 

d Density U Lattice energy 
6 Percentage difference in lattice constants v Volume per molecule 
e Electron charge V Molar volume 

Dielectric constant 2 Wavelength 

The composition of mixed crystals is given in molar 
fraction, x. Thus the mixed crystal KClxBr 0 x) con- 
tains x mole fraction of KC1 and (1 - x )  mole 
fraction of KBr. When an equation is given for a 
physical property, p represents the property for the 
mixed crystal ABxC~-x and p~ and P2 are the values for 
the pure crystals AB and AC, respectively. 

1. Int roduct ion 
A mixed crystal is obtained by crystallizing together 
two isomorphous crystals like KC1 and KBr. Iso- 
morphism is not the only condition for the formation 
of a mixed crystal; the lattice constants of the com- 
ponent crystals should be comparable. Tobolsky [1] 
showed that for ionic crystals like alkali halides 
complete miscibility is possible only above a tempera- 
ture T given by T = 4.552, 5 being the percentage 
difference in lattice constants. For alkali halides at 
room temperature 5 takes a value of 8%. Recently, 
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Bharadwaj and Roy [2] have shown that the miscibility 
depends on the pressure as well. 

The distribution of the mixing atoms may take 
place in two ways: substitutionally or interstitially. In 
substitutional mixed crystals, again, there are two 
types: ordered and disordered. Alkali halide mixed 
crystals are of the completely disordered substitutional 
type. 

A mixed crystal has physical properties analogous 
to those of the pure crystals. The composition depen- 
dence varies from system to system and from property 
to property. In many cases, the property changes 
monotonically with composition in a linear or nearly 
linear manner. Once the trend in composition depen- 
dence is established, we have a means to have a tailor- 
made crystal with a desired value for a given physical 
property. In a few properties, the composition 
dependence is highly non-linear and, in some cases, the 
magnitude of the physical property for the mixed 
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crystal even exceeds the values for the end members. 
In such a case, it is as if we have a new crystal in the 
family. Such behaviour is shown, for instance, in the 
microhardness of alkali halide mixed crystals. In some 
instances, mixed crystals show exciting behaviour. 
One such example is the appearance of a first-order 
Raman spectrum in mixed crystals of alkali halides 
which is absent in the pure crystals. 

Interesting and important as the alkali halides are, 
no less important are their mixed crystals. Sixteen 
pairs of alkali halides are completely miscible at room 
temperature and several have limited miscibility. 
Some of these mixed crystals have found applications 
as information storage devices [3], as laser window 
materials [4, 5] and as neutron monochromators [6]. 
There is considerable work on the physical properties 
of alkali halide mixed crystals but it is scattered in the 
literature. Kitaigorodsky's treatise [7] on mixed crys- 
tals covers a very wide range of mixed crystals; as a 
consequence, the alkali halide mixed crystals have not 
been treated in any great detail. Hari Babu and Subba 
Rao [8] have recently reviewed aspects of the growth 
and characterization of alkali halide mixed crystals. 

In the present review, several physical properties of 
alkali halide mixed crystals are considered. The trends 
in experimental data are analysed with particular 
reference to the composition dependence. Theoretical 
interpretations are discussed. We have not included a 
discussion of dislocations, ionic conductivity, micro- 
hardness and colour centres as these properties have 
been discussed at length in the review by Hari Babu 
and Subba Rao [8], although we refer to some of their 
conclusions. Our discussion is mainly confined to 
alkali halide mixed crystal systems with NaC1 struc- 
ture; there is not much work on systems with the CsC1 
structure. 

2. Growth, characterization and 
composition determination of mixed 
crystals 

Out of the seventeen alkali halides having NaCI struc- 
ture, fifteen are soluble in water. It is possible to grow 
mixed crystals by evaporation of aqueous solution. 
However, the melt technique is commonly employed 
and single crystals with linear dimensions of several 
centimetres have been obtained. 

Aspects of crystal growth and the characterization 
of alkali halide mixed crystals have been reviewed in 
detail by Hari Babu and Subba Rao [8]. Veeresham 
e t  al. [9] have grown single crystals of the mixed crystal 
systems KC1-KBr, KC1-KI, KBr -KI  and KC1-NaC1. 
In all these systems, they found that the dislocation 
density increases with the degree of mixing and is 
maximum at the equimolar composition. Subba Rao 
and Haft Babu [10, 11] studied the microhardness of 
KC1-KBr and KBr -KI  systems and found that the 
composition variation is similar to that of dislocation 
densities. Thus the mixed crystals, while retaining the 
properties of the pure crystals, have the advantage of 
a larger mechanical strength. Small-angle X-ray 
scattering studies [12] and diffuse X-ray scattering 
studies [13] of KC1-KBr mixed crystals have shown 
the absence of clusters or order. Freund e t  al. [6] grew 

KC1-KBr single crystals with a continuous variation 
of composition from one end to the other. Padiyan 
and Mohanlal [14] have grown a quaternary mixed 
crystal K0. 5 Rb0.sC10.5 Br0.5. 

If the mixed crystals are grown from solution, there 
can be a considerable difference between the com- 
position of the starting mixture and that of the result- 
ing crystal. This difference is much less when the melt 
technique is employed. However, significant differences 
in composition do exist from region to region of a 
crystal. Local variations in composition up to 20% 
were observed in KC1 KBr crystals [12]. In studies of 
the composition dependence of properties of mixed 
crystals, the accurate determination of composition is 
as important as the determination of the property 
itself. 

For alkali halide mixed crystals with anionic sub- 
stitution, the method of potentiometric titration [10] 
can be used for composition determination. In the 
case of cationic substitution, the techniques of atomic 
absorption spectroscopy [15] and X-ray fluorescence 
[16] are useful. Since the lattice constants can be deter- 
mined accurately and the law of composition depen- 
dence of lattice constants is fairly well established, it 
affords a simple but reliable method for composition 
estimation which can be used for mixed crystals with 
anionic as well as cationic substitution [16, 17]. Nair 
and Walker [12] determined the composition of 
KC1-KBr mixed crystals from the measured macro- 
scopic densities assuming an additivity rule. Recently, 
Rao e t  al. [18] proposed a method of composition 
estimation of mixed crystals from the Compton scat- 
tering of gamma rays. The method is non-destructive 
but time-consuming (seven days for a sample). 

3. Composition dependence of physical 
properties 

3,1. Lattice constants 
The composition dependence of lattice constants in a 
mixed crystal series can be expressed by a general 
relation of the type 

a n = xa"l + (1 - x)a~ (1) 

Different values have been proposed for the exponent 
n. When n = 1, Equation 1 becomes 

a = x a l  + (1 - x)a2 (2) 

This equation, which predicts a linear composition 
dependence, was suggested empirically by Vegard [19] 
and is known as Vegard's law. 

If  the volumes are assumed to be additive, we get 

a 3 = xa~ + (1 -- x)a~ (3) 

This equation is known as Retger's rule and represents 
an ideal mixed crystal. Zen [20] pointed out that if the 
difference between al and a2 is very small, Equation 3 
is indistinguishable from Equation 2. 

Expressing the lattice energy U of an ionic crystal as 

- A e  2 b 
U - - -  + (4) 

r P 

Grimm and Herzfeld [21] showed that the exponent n 
in Equation 1 is related to the power of r in the second 
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T A B L E I Lattice constant a (nm) of some alkali halide mixed crystal systems 

KClxBr(1 x)[10] KxRb(l_x)I [ 1 5 ]  NaClxBro_x)[26 ] 

x a x a x a 

NaxKo_x)C1 [27] KxRb(1 x)C1 [28] 

X a x a 

0 0.66008 0 0.7346 0 
0.15 0.65623 0.10 0.7314 0.215 
0.286 0.65064 0.22 0.7294 0.370 
0.460 0.64594 0.30 0,7269 0,495 
0,615 0.64096 0.40 0.7242 0.740 
0.864 0.63360 0.50 0.7222 1.000 
1.000 0.62741 0.62 0.7172 

0.75 0.7133 
0.87 0.7106 
1.00 0.7066 

0.5956 0 0,62916 0 0.6592 
0.5884 0.100 0.62354 0.338 0.6491 
0,5840 0.300 0.61185 0.525 0.6431 
0.5710 0.383 0.60654 0.913 0.6322 
0.5658 0.500 0.59913 1.000 0.6292 
0.5638 0.504 0.59883 

0.598 0.59256 
0.699 0.58571 
0.824 0.57705 
0.900 0.57156 
1.000 0.56400 

term in Equation 4 and is equal to 8, giving 

a s = xa~ + (1 - x)aS2 (5) 

Recent data for the lattice constants of the 
KC1-KBr, KC1-RbC1, KC1-NaC1, KBr-KI  and 
NaC1-NaBr systems are given in Table I. Several 
investigators have tried to fit their data to one of the 
three equations given above (Equations 2, 3 and 5). 
Instead of comparing observed values of the lattice 
constant (aE) with values calculated (ac) from the 
equations, Slagle and McKinstry [22] compared 
values of (aE -- ac) corresponding to these equations. 
This appears to be a more sensitive way of testing the 
above equations. The conclusions of various authors 
regarding the form of Equation 1 as tested on several 
systems are summarized in Table II. The bulk of the 
evidence indicates that the composition dependence of 
lattice constants in alkali halide mixed crystal systems 
is best represented by Vegard's law (Equation 2). 

Mahapatra and Padhi [23] obtained the lattice con- 
stants for the KC1-KBr system by a novel method. 
From the Compton profile, the autocorrelation factor 
was determined which, in turn, yielded the lattice 
constant. The lattice constant, thus determined, was 
found to obey Vegard's law. 

The KC1-NaC1 system shows the largest deviation 
from Vegard's law [10], but it must be noted that this 
system has the poorest stability among the alkali 
halide mixed crystal systems. Evidence of some order 
has been obtained only in the KC1-NaC1 system [24]. 

Kempter and Elliott [25] studied the lattice con- 
stants of U O z - T h O  2 mixed crystals at high tem- 
perature and observed that the deviations from 
Equation 3 increase with increasing temperature. Such 
studies have not been made on the alkali halide mixed 
crystals. 

3.2. Density and molar volume 
It is surprising that measured values of the density, a 
simple but useful and fundamental quantity, are not 
available for all the mixed crystal systems of alkali 
halides. Barrett and Wallace [27] determined the den- 
sities of the KC1-NaC1 system. Wollam and Wallace 
[31] carried out pycnometric measurement of the den- 
sities of the KC1-KBr and NaC1-NaBr systems. Slagle 
and McKinstry [32] measured the densities of 
KC1-KBr mixed crystals. The data obtained by these 
investigators are given in Table III. 

Barrett and Wallace [27] and Wollam and Wallace 
[31] have calculated the densities of mixed crystals of 
KC1-NaC1, KC1-KBr and NaC1-NaBr from the lat- 
tice constants. These X-ray densities were found to be 
systematically higher than the pycnometric values for 
the mixed crystals; further, the difference was larger in 
the equimolar region. From this difference in den- 
sities, Barrett and Wallace [27] estimated the number 
of Schottky defects which was found to be large in the 
equimolar region. 

From the values of the measured density, we have 
calculated the molar volume. The variation of molar 
volume with composition is shown in Fig. 1 for the 
KC1-KBr, NaC1 NaBr and KC1-NaC1 mixed crystal 
systems. The composition dependence of the volume is 
linear in the KC1 KBr and NaC1-NaBr systems; very 
slight positive deviations from linearity are observed 
in the NaC1-KC1 system. 

3.3. Bulk modulus and compressibility 
Values of the bulk modulus and its reciprocal, the 
compressibility, are not available from direct com- 
pression experiments but can be obtained from the 
elastic constants using the relation 

1 C,l + 2C,2 
K -  ~p - 3 (6) 

Values of the bulk modulus for the KC1-KBr [32], 
KC1-RbC1 [33], KC1 NaC1 [34] and KBr-KI  [35] sys- 
tems calculated from room-temperature data on 

T A B L E  II Summary of  studies on the composition 
dependence of lattice constants 

System Authors Law of 
composition 
dependence 
(value of  n in 
Equation 1) 

KC1 KBr 

KB r -KI  
KI -RbI  

NaCI-NaBr 
KC1-NaC1 
KCI RbC1 

Havighurst et  al. [29] 1, 3 
Slagle and McKinstry [22] 3 
Subba Rao and Hari Babu [10] l 
Mahapatra and Padhi [23] 1 
Nair and Walker [16] 3 
Van Den Bosch et al. [15] 1 
Fertel and Perry [30] 1 
Avericheva et  al. [26] 1 
Barrett and Wallace [27] 3 
Gnaedinger [28] 1 
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TAB LE I I I Pycnometric and X-ray densities, d (10 3 kg m -3), of mixed crystals 

KClo .,-) Brx NaCI(I -x) Brx Na x K o _ ~)C1 

x d x d 

Pycnometric X-ray 

x d 

Pycnometric X-ray Pycnometric X-ray 

Wollam and Wallace [31] 
0.00 1.987 1.986 0 
0.20 2.156 2.160 0.1000 
0.30 2.238 2.239 0.1997 

Slagle and McKinstry [32] 0.2996 
0 1.984 0.3991 
0.168 2.129 0.4993 
0.171 2.126 0.5991 
0.382 2.302 0.7987 
0.387 2.300 1.0 
0.578 2.453 
0.598 2.473 
0.80 2.613 
1.0 2.744 

WollamandWallace [31] Barrett and Wallace [27] 
2.1615 2.1630 0 1.9880 1.9881 
2.2829 2.2848 0.1002 1.9964 1.9982 
2.3971 2.3987 0.2997 2.0117 2.0217 
2.5069 2.5123 0.4999 '2.0368 2.0538 
2.6169 2.6220 0.6990 2.0683 2.0922 
2.7203 2.7244 0.9003 2.1321 2.1363 
2.8255 2.8284 1.0000 2.1615 2.1630 
3.0160 3.0228 
3.1980 3.1992 

elastic constants are given in Table IV and are shown 
in Fig. 2. 

The composition dependence of the bulk modulus is 
nearly linear in the KC1-KBr, KBr KI and KC1- 
RbC1 systems. A careful examination reveals a slight 
negative deviation from linearity. The maximum 
deviation is about 2% in the equimolar region in the 
KC1-KBr system. This deviation will be discussed 
later. In the KC1-NaC1 system, the negative deviation 
from linearity is large ( ~  15%) in the potassium-rich 
region. It may be noted that the KC1-NaC1 system has 
a poor stability. Further, for this system, bulk modu- 
lus data are available only in the potassium-rich and 
sodium-rich regions and is lacking in the intermediate 
range of compositions. Hence, we shall not give much 
weightage to Observations on this system and conclude 
that, in general, the composition dependence of the 
bulk modulus in alkali halide mixed crystals is nearly 
linear with a slight negative deviation from linearity. 

Fancher and Barsch [36, 37] proposed the following 
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Figure 1 Composition dependence of molar volume: (0) KCI o_x)BG, 
( •  NaC1 o x)Brx, [] Na o x)KxC1. 

41 2 0  

functional form for AK (the difference between the 
experimental value of the bulk modulus and that 
expected from a linear composition dependence): 

A K  = D x ( 1  - x )  (7) 

Assuming the additivity of volumes, Fancher and 
Barsch [36, 37] obtained the following expression for 
D: 

D = [(K, V2) 2 - (/s V~)2](K2 - K,) (8) 
2K, K2 V1 V2 

The values calculated from Equation 7 are shown in 
Fig. 3, along with those obtained from the experimental 

0,26 

0.24 - / 

0"22 I - / 

oaoj- 

% 
0 . 1 6 ~  �9 �9 

0"12 U 

0.101 I I I I 
0 . 2  o.z, 0.6 0.8 1 . 0  

X 

Figure 2 Composition dependence of bulk modulus: (o) 
KClxBr(I x)[38]; (ra) KC1,Br(I_~ ) [32]; (ll) KxRb o x)C1 [33]; (x )  
Ko_x)NaxC1 [34]; (O) KBrflo_x) [35]. 
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Figure 3 Composition dependence of  AK 
for KC1-KBr system: (o) experimental 
values [32], ( ) Equation 7. 

data of Slagle and McKinstry [32]. Fancher and 
Barsch [36, 37] observed that the two sets of values 
(experimental and calculated from Equation 7) agree 
fairly well though not perfectly. The lack of perfect 
agreement was attributed partly to experimental error. 

Shanker and Jain [38] made an attempt to calculate 
the bulk modulus of mixed crystals of  alkali halides 
from a Born-Mayer type of potential energy function. 
They assumed a potential function, U, of the form 

U = Uc + Uv + UR (9) 

Here Uc, Uv and UR represent the contributions of the 
Coulomb, van der Waals and repulsive interactions, 
respectively. The repulsive interaction was considered 
up to the second neighbours. In the van der Waals 
terms, cross-interactions between the mixing ions 
(namely chlorine and bromine in KC1-KBr) were 
included. The various parameters in the potential 
function were estimated from those for the end mem- 
bers, and the bulk modulus was obtained from the 
relation 

1 d2U 
K - 18r dr 2 (10) 

Shanker and Jain [38] compared the values of K cal- 
culated in this way with experimental values and 
concluded that the agreement between theory and 
experiment was quite satisfactory. However, the 
"experimental" values quoted by Shanker and Jain 
are not truly experimental values; they are values 

obtained by linear interpolation of the bulk modulus 
values of the end members [5]. The values calculated 
by Shanker and Jain for the KC1-KBr system are 
shown in Fig. 2 along with the experimental values of 
Slagle and McKinstry [32]. It can be seen that the 
calculated values are systematically less than the 
experimental values by about 13% over the entire 
composition range (including the end members). 

The composition dependence of the compressibility 
of the alkali halide mixed crystal is also nearly linear. 
The deviations from linearity are slight but positive. 
Varotsos and Alexopoulos [39] proposed a theoretical 
interpretation of the observed composition depen- 
dence of the compressibility of mixed crystals which 
takes into account the .volume change in a crystal due 
to the creation of defects. This change in volume is 
given by 

V = V ~ + n(v  d + v ~ (11) 

Here, V and V ~ are respectively the molar volumes of 
the mixed crystal and the pure crystal, say KC1. v ~ is 
the volume of a molecule of KC1 (in the KC1 crystal) 
and v a the defect volume, n is the number of defects, 
i.e. the number of KBr molecules introduced in the 
KC1 lattice, and (v d + v ~ represents the change in 
volume when a KC1 molecule is replaced by a KBr 
molecule. By differentiation of Equation 11, we get 

tpV = O~ ~ + n(Oav a + tp~ ~ (12) 

where 0, 0 ~ and 0 d represent the compressibilities of 

T A B L E  IV Bulk modulus, K (10 H Nm-2) ,  of some alkali halide mixed crystals 

KClxBr0 x)[32] KxRb(l_x)C1 [33] KxNa(l x)C1 [34] KBrxIo_,) [35] 

x K x K x K x K 

0 0.154 
0.200 0.159 
0.402 0.164 
0.422 0.164 
0.613 0.169 
0.618 0.169 
0.829 0.176 
0.832 0.177 
1.0 0.183 

0 
0.25 
0.50 
0.75 
1.00 

0.163 
0.165 
0.169 
0.173 
0.179 

0 
0.038 
0.058 
0.824 
0.900 
1.0 

0.253 
0.244 
0.240 
0.172 
0.168 
0.190 

0 
0.220 
0.385 
0.765 
1.0 

0.118 
0.123 
0.126 
0.140 
0.150 
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T A B L E  V The compressibilities of mixed crystals in the T A B L E  VI Room-temperature values of the second-order 
KCI,BrIj_, ~ system elastic constants of mixed crystals KCI~Br(I x), C,j (10~~ -2) 

X ~(10 It N I m2) 

Calculated from Experimental [32] 
Equation 15 

0 6.482 
0.200 6.236 6.309 
0.205 6.241 6.284 
0.402 6.071 6.135 
0.422 6.041 6.099 
0.613 5.844 5.903 
0.018 5.854 5.905 
0.829 5.662 5.656 
0.832 5.643 5.659 
1.0 - 5.464 

the mixed crystal, the host crystal and of the defect 
volume, respectively. Varotsos and Alexopoulos [39] 
use a result obtained by them earlier [40] according to 
which 

@d = ~o d2K0 [dK0 1- '  
d P :  LdP - 1 (13)  

where K 0 is the bulk modulus of the host crystal and 
P the pressure. At this stage, Varotsos and Alexopoulos 
[39] make use of the Born potential for an ionic crystal 

Ae 2 b 
U - - - r  + r m (14) 

where the symbols have the usual significance. From 
Equation 14, the first and second pressure derivatives 
of K0 are obtained and substituted in Equation 13. 
Finally, the substitution of Equation 13 in Equation 12 
gives 

@ = @~ V~  N )  @~ n Nvd 1 + 4(m + 3) 
-~  1 + + N V 3 ( m + 4 )  

(15) 

v a is obtained from the measured densities by the use 
of Equation 11. The estimation of the compressibility 
@ of the mixed crystal from Equation 15 requires a 

Slagle and McKinstry [32] Sharko and Botaki [41] 

X CII CI2 C44 x CII Ci2 C44 

0 3.468 0.580 0.507 
0.200 3.545 0.605 0.531 
0.205 3.544 0.615 0.530 
0.402 3.630 0.630 0.552 
0.422 3.665 0.632 0.557 
0.613 3.762 0.660 0.580 
0.618 2.764 0.658 0.581 
0.829 3.922 0.691 0.608 
0.832 3.925 0.688 0.607 
1.00 4.069 0.711 0.63l 

0 3.468 0.522 0.507 
0.245 3546 0.546 0.528 
0.395 3.630 0.606 0.544 
0.51 3.665 0.625 0.558 
0.74 3.782 0.674 0.585 
1.0 3.989 0.725 0.625 

knowledge of the compressibility ~0 of the host crystal 
and the measured density of the mixed crystal. The 
values of the compressibility obtained by Varotsos 
and Alexopoulos [39] for the KC1 KBr system are 
given in Table V along with experimental values from 
the data of Slagle and McKinstry [32]. The calculated 
values agree with the experimental values within 0.3 to 
0.6%, which is within the experimental error. 

3.4. Second-order elastic constants (SOEC), 
third-order elastic constants (TOEC) and 
pressure derivatives of SOEC 

The SOEC for alkali halide mixed crystals are avail- 
able for the following systems: KC1-KBr [32, 41], 
KBr-KI [35], KC1-RbC1 [33], KC1-NaC1 [34] and 
NaCI-NaBr [42]. 

Slagle and McKinstry [32] measured the SOEC for 
several compositions in the KC1-KBr system at room 
temperature and for four compositions at elevated 
temperatures up to 400~ Sharko and Botaki [41] 
made measurements from low temperatures up to 
room temperature. The room-temperature values of 
the SOEC for the KC1-KBr system from both the 
sources are given in Table VI. 

The values given by Slagle and McKinstry [32] are 
shown in Fig. 4 to indicate the composition depen- 
dence. Regarding the composition dependence of the 

04 

IE 
Z 

(:3 

o 

4.6 

4.4. 

4-.2 

&.O 

3.8 

3.6 

3./. 

41 22 

C12 

| 

~11 

I I I I 
0 0.2 0,4. O,G 0,8 

X 

0,7 2 

0.68 

0.64. 

O.GO 

0.56 

0.52 

0 .48  
1.0 

N 
IE 
Z 

o 
o 

-4" 

t~ 

r 

Figure 4 Composition dependence of  second-order elastic 
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elastic constants of KC~KBr crystals, Slagle and 
McKinstry [32] comment that when the elastic con- 
stants C~ and C44 are plotted against composition, the 
resultant curve is not a straight line but a curve con- 
cave upward and that the experimental uncertainty in 
C~2 does not allow a better description than linear 
dependence. Fancher and Barsch [36, 37] examined 
Slagle and McKinstry's data and concluded that C~2 
and C44 vary linearly with composition but C~ "hangs" 
up to two per cent below the straight line joining the 
values for the end members. Sebastian [43] observed 
that the SOEC of KCLBr<~_~) crystals can be repre- 
sented by the equations 

Cll = X(Cll)K31-~- (1 -- x)(Cl l )K3r (16) 

C,2 = x(C~2)KC, + (1 -- x)(CI2)KBr (17) 

C44 : x(C44)KC1 + (1 - -  x)(C44)KBr (18) 

Recently, Basu et al. [44] theoretically investigated 
the composition dependence of the SOEC of alkali 
halide mixed crystals. Combining the pseudo-unit cell 
model of Chang and Mitra [45] for the mixed crystal 
and the deformable shell model of Basu and Sengupta 
[46] for the lattice dynamics, they obtained 
expressions for the three static elastic constants of the 
mixed crystal AB~C o _x). These expressions involve six 
parameters pertaining to each of the end members. 
The values of the static elastic constants for various 
compositions in the KC1-KBr system calculated by 
Basu et al. [44] from their theory agree with the exper- 
imental values of Slagle and McKinstry [32] within 
1%. 

The composition dependence of SOEC does not 
seem to be the same in all mixed crystal systems of 
alkali halides. Thus, in the KBr-KI system [35] all the 
elastic constants show a non-linear composition 
dependence with negative deviations from linearity. 
The maximum deviation is about 3% in all the elastic 
constants in the equimolar region. In the KC1-RbC1 
system [33], the elastic constant 644 shows non-linear 
composition dependence in addition to C~. In the 
KC1-NaC1 system [34] the trend is different. 

Apart from the study of one mixed crystal, namely 
KC10.923Br0.077 [47], there is no experimental work on 
the TOEC and the pressure variation of SOEC of 
mixed crystals. 

Varotsos and Alexopoulos [39] obtained an 
expression for the pressure derivative of bulk modulus 
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Figure 5 Composition dependence of pressure derivative of bulk 
modulus for the KCI(~ ~)Brx system: ( ) [39], ( - - - )  [38], (| [47], 
( e )  [381. 

of mixed crystals on the basis of the model discussed 
earlier and made estimates of dK/dP for various 
compositions in the KClxBr(l x) system. Shanker and 
Jain [38] also calculated dK/dP for the KC1-KBr 
system from an interatomic potential. The values of 
dK/dP obtained by Varotsos and Alexopoulos [39] 
and Shanker and Jain [38] are plotted in Fig. 5, along 
with the experimental values for KC1, KBr and 
KClo.923 Bro.077 . It is seen that the values of Shanker and 
Jain are systematically lower than those of Varotsos 
and Alexopoulos by about 20%. Further, the exper- 
imental values for KCI, KBr and the single mixed 
crystal are close to the values of Varotsos and 
Alexopoulos. This indicates that the concept of defect 
volume compressibility introduced by Varotsos and 
Alexopoulos [39] plays an important role in determin- 
ing the elastic behaviour of mixed crystals. However, 
to confirm this point, further experimental data for 
various compositions in the KC1-KBr system and also 
other mixed crystal systems are desirable. 

Singh et al. [48] have made theoretical estimates of 
the TOEC and pressure derivatives of SOEC for the 
NaC1-NaBr system, but experimental values are not 
available for comparison. 

3 . 5 .  S t a t i c  d i e l e c t r i c  cons tan t  
There is very little work on the dielectric constant of 
mixed crystals. Fertel and Perry [30] were the first to 
determine the static dielectric constant of the 
KC1-KBr system. The values were obtained by 
Kramers-Kronig analysis of infrared reflectivity 
curves of the crystals. Subsequently Kamiyoshi and 
Nigara [49] studied this system. They made measure- 
ments at 1 MHz by the immersion method. The values 
obtained in these two experiments are given in Table 
VII and are also shown in Fig. 6. This is the only 
system for which results on dielectric constant are 
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Figure 6 Composition dependence of static dielectric constant for 
the KClo_x)Br x system: (A) [30], (O) [49], (e) [50]. 
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T A B L E  VII  Values of static dielectric constants for the 
KCI{~ x)Br~ system 

X g X E 

[30] 
[491 [501 

0 5.4 0 4.81 4.812 
0.08 5.8 0.15 4.84 4.865 
0.25 5.9 0.22 4.89 4.911 
0.50 5.1 0.23 4.90 4.912 
0.75 5.8 0.53 4.96 4.948 
0.92 5.4 0.77 4.93 4.943 
1.0 6.5 0.78 4.93 4.938 

0.80 4.91 4.935 
0.96 4.88 4.891 
1.0 4.87 4.871 

available from infrared reflectivity and also from 
direct measurement. However, as can be seen from 
Fig. 6 there is a serious discrepancy between the two 
sets of values. Recently, a systematic study of the 
KC1-KBr system has been carried out by Sirdeshmukh 
and Prameela Devi [50]. Their results are also included 
in Table VII. It is seen that these new results confirm 
the results obtained by the Japanese workers. 

Kamiyoshi and Nigara [49] also made measure- 
ments on four other systems, namely NaC1-NaBr, 
RbC1-RbBr, KC1-RbC1 and KBr-KI. In all these 
systems it was found that the composition dependence 
of dielectric constant is slightly non-linear, with 
positive deviation from linearity. 

Kamiyoshi and Nigara [49] proposed the following 
equation for the dielectric constant of a mixed crystal 
in terms of its composition: 

g - -  1 

s + 2  

, 

= x \ 2 ,  j \ a )  5, + 2 

-}- (1 - -  X ) ( 2  ~ 2 ( a 2 ~ 6  /~ 2 - -  1 

\~, ]  kay s2 + 2 

+ x 1 - \~, ]  \a,}  JR~ T 2  

1 
+ ( l - x )  1 - \ 2 2 ) \ a j j R ~ T  2 

(19) 

This equation was obtained by a combination of the 
Clausius-Mosotti equation and the Lorentz-Lorenz 
equation and was based on the assumption that the 
ionic polarizabilities for mixed crystals are strongly 
dependent on the lattice constant. The lattice constant 
and polarizabilities vary according to the empirical 
relations 

a = al + (1 - x)(a2 -- a,) (20) 

2 = 2, + (1 - x)(22 - 2,) (21) 

This interpolation equation requires the knowledge of 
lattice constants, the refractive index, the dielectric 
constant and infrared absorption wavelength (2) for 
the pure crystals. Recently Varotsos [51] re-examined 
this equation and tried to provide a theoretical justifi- 
cation. He started with the Clausius-Mosotti equation 
and expressed the polarizabilities in terms of an elec- 
tronic component and an ionic component. By adopt- 

T A B L E V I I I Experimental and calculated refractive indices of 
KClxBr(~_x) mixed crystal system 

x .  R 

Experimental Calculated 

0 1.5593 
0.2 1.5433 1.5474 
0.4 1.5330 1.5345 
0.6 1.5209 1.5208 
0.8 1.5047 1.5060 
1.0 1.4902 

ing suitable expressions for the polarizability Varotsos 
[51] obtained the equation 

s -  1 _ 1 I (a~(R~--  1) a~(R~ _-- 1)'] 
5 - 2  a3 L x \  ~-2-+- 2- R 2 + 2  ] 

a 2 ( R 2 -  l) 
+ R ~ + 2  

4 (~--~a X 1 ~ X ) - '  
+ 3e--~ + - - +  mB 

• 7(1 - x ) a 2 K 2 )  (22) 
\ /qK + #2 K J 

Here s0 is the vacuum dielectric constant./7 and 7 are 
the values of the ionic polarizabilities for KC1 and 
KBr, respectively, mA, mB and mc are respectively the 
masses of atoms A, B and C in a mixed crystal of type 
ABxC t x. This equation needs only three quantities, 
namely lattice constants, refractive index and the bulk 
modulus of the end members. Data on bulk modulus 
for mixed crystals are available for several systems. 
Alternatively the bulk modulus of the mixed crystals 
can be calculated from the values of the pure crystals 
by the method of Varotsos and Alexopoulos [39]. 
Varotsos [51] found that the results obtained from this 
equation agree well with the experimental results. 
Thus the equation gives a value of 4.937 for the dielec- 
tric constant of KC10.4Br0. 6 which agrees well with 
experimental value 4.94. 

3.6. Optical and piezo-optic properties 
Refractive index measurements have been made only 
on the KCI-KBr system. Using an Abbe refracto- 
meter and Na-D light, Nigara and Kamiyoshi [52] 
determined the refractive index. They observed that 
the experimental values of the refractive index agreed 
well with those calculated from the Lorentz-Lorenz 
formula (Table VIII). 

The alkali halides are optically isotropic but 
develop birefringence when subjected to uniaxial 
stress. Measurements of the piezo-optic birefringence 
of pure alkali halides have been made by Bansigir and 
Iyengar [53]. Bansigir and Iyengar [54] proposed a 
theory for the piezo-optic birefringence of alkali 
halides by taking into account the effects of change in 
density as well as change in polarizability on the 
refractive index. An experimental study of the piezo- 
optic birefringence in KC1-KBr mixed crystals has 
been made by Ethiraj et al. [55], who observed that the 
piezo-optic Brewster constants vary non-linearly with 
composition. Kumar et al. [56] showed that the 
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observed variation can be accounted for by the theory 
of Bansigir and Iyengar [54]. 

3.7. Thermal expansion 
Although there is considerable work on the thermal 
expansion of pure alkali halides, the work on mixed 
crystals is surprisingly scanty. 

Kantola [57] made measurements on three compo- 
sitions in the KC1-KBr system. Slagle and McKinstry 
[32] refer to their own measurements on the KCI-KBr 
system. The values are not given in the paper by Slagle 
and McKinstry but they comment that deviations 
from linearity are of the order of 2%. Salimaki [58] 
also made measurements on three compositions and 
found positive deviations from linearity. 

Hietala [59, 60] developed a theory of heat of 
formation for solid solutions, and as a byproduct 
obtained the relation 

3 A r l - s  
zx~ - - -  x (1  - x )  ( 2 3 )  

T v r l + s  

where zXe is the deviation of the volume coefficient of 
expansion from linearity, T v is the temperature at 
which Vegard's law is valid, Ar is the difference in 
lattice spacing of end members, r the lattice spacing of 
the mixed crystal and s = Qt~l/q02. Although 
Equation 23 is very approximate and its validity is 
doubtful, the experimental results of Kantola [57] and 
Salimaki [58] plotted in Fig. 7 show qualitative 
agreement. 

Ivankina and Pozdeeva [61] made measurements on 
the KC1-RbC1 system at elevated temperatures. They 
observed that the values of the coefficient of thermal 
expansion deviate from linearity with maximum 
deviation at the equimolal composition; this deviation 
was found to decrease with increasing temperature 
and to vanish at 750 ~ C. 

3.8. Debye temperature  
The Debye temperature is derivable from experimen- 
tal data like specific heats, elastic constants, X-ray and 
neutron diffraction intensities, etc. Various methods 
of determination of Debye temperatures have been 

discussed in reviews by Blackman [62], Herbstein [63], 
Mitra [64] and Alers [65]. 

Several relations have been proposed either semi- 
theoretically or empirically to describe the com- 
position dependence of the Debye temperatures of 
mixed crystals. Thus, by assuming the additivity of 
specific heats and using for the specific heat the low- 
temperature expression from Debye's theory (the 
Debye T 3 expression), the following relation is 
obtained: 

| 3 = x |  + (1 - x ) |163 3 (24) 

where 0~ and 02 are the Debye temperatures of the 
end members and | that of the mixed crystal. This 
relation is known in literature as the Kopp-Neumann 
relation (See Swalin [66], for a discussion). Following 
the same procedure but employing the high- 
temperature expression for specific heats (Ghatak and 
Kothari [67]), Nagiah and Sirdeshmukh [68] obtained 

02 = x| + (1 - x)| (25) 

Karlsson [69] and Nagiah 
pectively, proposed the 
empirical considerations: 

and Sirdeshmukh [68], res- 
following relations from 

0 .2 = x e i  -2 + (1 - x)022 (26) 

0- -1  = X |  1 ~_ (1 - -  X ) 0 2 1  (27) 

A number of reports on the Debye temperature are 
available for several mixed crystal series of alkali 
halides. A summary of the reports is given in Table IX. 
From this summary it may be concluded that, in 
general, the composition dependence of the Debye 
temperatures of mixed crystals is slightly non-linear 
with negative deviations from linearity. By and large, 
the composition dependence is well described by the 
Kopp-Neumann relation (Equation 24). 

3.9. The D e b y e - W a l l e r  fac tors  and s ta t ic  
d i s to r t i on  

The reduction of intensity of a diffracted X-ray or 
neutron beam due to the thermal vibrations in the 
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TA B LE I X Summary of reports on the Debye temperatures of mixed crystals 

System Reference Method Conclusion regarding composition dependence 

KC1 KBr [69] Specific heats Equation 26 found suitable 
[41] Elastic constants Negative non-additivity observed 
[68] Elastic constants Equations 24, 25 and 27 tested and Equation 27 found most 

suitable 
[33] Deviation from linearity negligible 
[34] Deviation from linearity largest among alkali halide mixed 

crystal systems and attributed to low stability 
[35] Negative non-additivity 
[70] Single composition (KBr0.5310.47) studied; Equation 26 found 

suitable 
[17] Equation 24 found suitable 
[71] Equation 24 found suitable except for one composition 

(K0. 5 Rb05 I) 
[72] Equation 24 found suitable 
[26] Equation 24 found suitable 

KC1-RbCI Elastic constants 
KCI-NaC1 Elastic constants 

KBr-KI Elastic constants 
Specific heats 

KBr RbBr X-ray diffraction 
KI RbI Neutron diffraction 

KF RbF Neutron diffraction 
NaC1 NaBr Elastic constants 

diffracting crystal is given by 

I = I 0 exp ( - 2 B  sin20/22) (28) 

where / i s  the observed intensity, I 0 the intensity for the 
static crystal and 0 the Bragg angle. B is known as the 
Debye-Waller  factor. It has been shown theoretically 
that B is related to the mean square amplitude of 
atomic vibration and also to the Debye temperature 
[73]. 

The Debye-Waller  factors of  KC10. s Br0.5 were deter- 
mined by Wasastjerna [74] and Ahtee e t  al. [75] from 
X-ray intensities. Recently, Mohanlal e t  al .  [76] deter- 
mined the Debye-Waller  factors for two compositions 
in the KC1-KBr system from neutron diffraction 
intensities. All these studies indicate that the Debye-  
Waller factors of  mixed crystals are larger than those 
expected from additivity. In fact, the Debye-Waller  
factors in the equimolar region are considerably larger 
than those for either end member.  

In a disordered mixed crystal, in which two kinds of  
atoms or ions are arranged on a set of atomic sites, 
small local distortions in the lattice arise because of 
the atoms of different sizes. The enhanced Debye-  
Waller factor is a consequence of this "size effect". 
Hietala [60], Borie [77], Weiss [78] and Dernier e t  al .  

[79] have proposed models to estimate the contri- 
bution of  the local disorder (B')  to the Debye-Waller  
factor. The Weiss model leads to the following 
expression for B'. 

B'  = 24x(1 -- x ) ( a l  - -  a2) 2 (29) 

The values of  B'  obtained f rom experiment and from 
Equation 29 for the KC1-KBr system are given in 
Table X. The agreement between experiment and 
theory is fair. 

TABLE X Static distortion factors (B') for KClxBr(~_x) mixed 
crystals 

x B'(10 2nm2) 

Experimental Calculated* 

0.2 0.34 + 0.10t 0.362 
0.4 0.47 +_ 0.10 t 0.543 
0.5 0.513 ++ 0.566 

* From Equation 29. 
tMohanlal et al. [76]. 
~Wasastjerna [74]. 
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Wasastjerna [74] also determined the Debye-Waller  
factors for K0.sRb0.sC1. Rcently, Srinivas and 
Sirdeshmukh [17] obtained the Deby~Wal le r  factors 
for several compositions in the K B r - R b B r  system 
from X-ray intensities. Their results (Fig. 8) also show 
that the composition dependence is highly non-linear, 
with values for intermediate compositions exceeding 
those of end members. Since a common Debye-Waller  
factor was assumed, a detailed comparison with the 
Weiss model is not possible. 

3.10. Energetics of mixed crystals (cohesive 
energy and heat of formation) 

The alkali halides are well described by the Born 
model for ionic crystals. The lattice energy can be 
expressed in one of the following forms: 

A e  2 b 
u - - -  + - ( 3 0 )  

r r n 

A e  2 
U - - -  + b e  -r/~ (31) 

r 

In the above equations, the first term represents the 
Coulomb energy and the second term the repulsion 
energy due to overlap, b, n and ~ are repulsion 
parameters which can be determined from the 
compressibility. 

For mixed crystals of  alkali halides, Tobolsky [1] 
used Equation 30. Wallace [80] employed Equation 31 
but also included the van der Waal terms. Shanker 
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Figure 8 Composition dependence of Debye Waller factor for the 
KxRb(l _x)Br system. 
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Figure 9 Composition dependence of heats 
of formation. Open and closed circles are 
experimental points: (a) KC1-KBr [81]; (b) 
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KC1, (O) [84], (O) [27]; (f) NaI-KI [84]; (g) 
NaBr KBr [84]; (h) KC1 RbC1 [82]. Solid 
and dashed curves refer to theoretical 
values: ( ) [89], (- -) [36, 37]. 

and Jain [38] calculated the lattice energies of alkali 
halide mixed crystals using recent input data. "Exper- 
imental" values of the lattice energy are not available. 

The formation of alkali halide mixed crystals is 
endothermic. The heat of formation is of the order of 
0.2 to 0.6 kcal mol 1 (0.8 to 2.5 kJ mol-I; compare this 
with the cohesive energy ~ 150kcalmol-1 or 
628kJmol-~). Heats of formation for several alkali 
halide mixed crystals have been carefully measured [27, 
81-84]. In all cases, the curve connecting the heat of 
formation and the composition is a vertical inverted 
parabola. Fineman and Wallace [83] showed that the 
experimental values of the heat of formation can be 
fitted to an empirical equation: 

H = a x  + b x  2 + c x  3 (32) 

where a, b and c are constants. 
Theoretically, the definition of the heat of forma- 

tion is 

H = U -  [ x U  1 -}- (1 - x)U2] (33) 

Several attempts have been made to theoretically 
account for the heats of formation. Tobolsky [1] and 
Wallace [80] calculated the heat of formation by sub- 
stituting in Equation 33 the lattice energy values cal- 
culated by them, but they observed a large difference 
from the experimental values. Durham and Hawkins 
[85] pointed out that agreement with experimental 
values of heat of formation is possible only by 
considering an additional mechanism. Thus, they con- 
sidered special configurations for the solute ions and 
calculated a "displacement energy" to be included in 

Equation 33. This improved the agreement somewhat. 
Fancher and Barsch [36, 37] used the model of Dick 
and Das [86, 87] for the relaxation of ions in the mixed 
crystals and obtained the "site energy". Twenty-six 
sites were allowed in the model. The calculation of the 
heat of formation for this model is lengthy but 
requires only limited input data (lattice constant, 
repulsive parameters and electronic polarizations). 
Fancher and Barsch's calculations gave reasonable 
agreement with experimental data in seven systems; 
only in the case of the KC1-RbC1 system was the 
deviation significant. 

Recently, Paul and Sengupta [88, 89] developed a 
simpler model in which the mixed crystal is treated as 
a defect crystal. The defect concentration is developed 
stepwise and in every step the defect crystal is con- 
sidered as an equivalent perfect crystal with a modified 
lattice parameter. The agreement between calculated 
and experimental values of H is better in the systems 
with negative-ion substitution than in systems with 
positive-ion substitution. 

The experimental values of H for eight systems are 
shown in Fig. 9 as a function of the composition along 
with values obtained theoretically by Fancher and 
Barsch [36, 37] and Paul and Sengupta [89]. 

3.1 1. Spectroscopic properties 
Kruger et  al. [90] were the first to record the IR spectra 
of alkali halide mixed crystals. They studied the 
NaC1-KC1 system. Mitsuishi [91] recorded the IR 
spectra for mixed crystals in the KC1-KBr and 
KC1-RbC1 systems. The KC1-KBr system was also 
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studied by Ferraro et al. [92]. Recently Angress et al. 

[93] have recorded IR spectra for the KC1-RbC1 and 
KBr-RbBr systems. In all these studies it has been 
observed that the frequency of the transverse optical 
mode varies linearly with composition. Fertel and 
Perry [30] obtained the IR frequency from the reflec- 
tivity data for the KC1-KBr system and reported a 
slightly non-linear dependence on composition. 

An interesting observation was made by Fertel and 
Perry [30] in their study of the KI-RbI system. For 
this system they observed not just a single frequency as 
in the case of pure crystals but two frequencies close 
to those of the pure crystals. Angress et al. [93] 
observed two frequencies in the KC1-RbBr system. 
This is a new phenomenon and is referred to as "two- 
mode behaviour." 

A phenomenological theory for the long- 
wavelength optic phonons of mixed crystals has been 
proposed by Chang and Mitra [45]. A criterion has 
been obtained to predict whether a given mixed crystal 
of type ABxC ~_x will exhibit a one-mode or two-mode 
behaviour. The criterion is 

mB > #AC one-mode behaviour 

mB < /~AC two-mode behaviour 

where rn B is the mass of Atom B and/~AC is the reduced 
mass of AC. 

Pure alkali halides show only second-order Raman 
spectra [12, 16, 94]. But in the mixed crystals, the 
addition of one of the alkali halides to another alkali 
halide disturbs the symmetry of the pure crystal and a 
first-order Raman spectrum is observed in the mixed 
crystals. Thus, the appearance of a first-order Raman 
spectrum is a new phenomenon displayed by mixed 
crystals but not displayed by the pure members. 

Nair and Walker [12] first studied the Raman 
spectrum of mixed crystals of the KC1-KBr system. 
Subsequently, they studied the KBr-KI, KC1-KI and 
KC1-RbC1 systems [16]. The KC1-KBr, KBr-KI and 
KCI-KI systems involved negative-ion substitution. 
For these systems Nair and Walker found that the T2~ 
phonon did not show much variation but the A~g 
phonon was found to vary linearly with composition. 
But the KCI-RbC1 system involves positive-ion sub- 
stitution. Here, the Raman spectra contain Eg and T2g 
phonons. In this system, the Eg phonon was found to 
vary linearly with composition but not the T2g 
phonon. The features in the observed first-order 
Raman spectra of alkali halide mixed crystals have 
been satisfactorily explained on the basis of a lattice 
dynamical model by Massa et al. [95, 96]. 

4. D i s c u s s i o n  
Several physical properties of alkali halide mixed 
crystals have been discussed in the preceding section. 
Theoretical work on the lattice dynamics of mixed 
crystals is not included in the above discussion. 
Results on experimental phonon dispersion relations 
are also not included as they are too sparse at the 
moment. On the basis of the composition dependence, 
the physical properties of these mixed crystals can be 
grouped in four categories as follows: 

T A B L E  XI Categorization of some physical properties of 
mixed crystals on the basis of their composition dependence (Type 
A, linear; Type B, slightly non-linear; Type C, highly non-linear; 
Type D, new phenomenon) 

Property Type 

A B C D 

Lattice constant x x x x x x x x x x x x x x x x  

Thermal expansion xxxxxxx 
Bulk modulus xxxxxxx 
Elastic constants xxxxxxx 
Debye temperature xxxxxxxxxxxxxxxx 
Refractive index xxxxxxx 
Dielectric constant xxxxxxxxxxxxxxxx 
Debye Waller factor xxxxxxx 
Dislocation density xxxxxxx 
Microhardness xxxxxxx 
Heat of formation xxxxxxx 
IR spectra 

Single mode xxxxxxxxxxxxxxxx 
Two modes 

Raman spectra 
(lst order) 

XXXXXXX 

XXXXXXX 

Type A: properties which show a linear com- 
position dependence. 

Type B: properties which show a slightly non-linear 
composition dependence. 

Type C: properties which show a highly non-linear 
composition dependence with values for mixed crys- 
tals exceeding those for end members. 

Type D: new phenomena (properties displayed by 
mixed crystals but not displayed by the pure crystals). 

In Table XI, this grouping of the properties is shown. 
Some properties not discussed in this review but dis- 
cussed elsewhere [8] are also included in the table. 

Most of the properties show either a linear com- 
position dependence (Type A) or a slightly non-linear 
composition dependence (Type B). This trend in the 
composition dependence is consistent with the facts 
that (i) these properties are, by and large, determined 
by the interatomic forces, (ii) the nature of the inter- 
atomic forces is the same for mixed crystals in a given 
series, and (iii) the magnitude of the interatomic 
interactions varies smoothly from one end member to 
the other. 

The properties which show a highly non-linear com- 
position dependence (Typce C) are influenced by 
additional factors not present in the pure crystals. 
Thus, the presence of a second atom at lattice points 
normally occupied by one atom results in a static 
displacement which enhances the Debye-Waller 
factor. This displacement (or strain) is also respon- 
sible for a higher dislocation density which in turn 
increases the microhardness. Although, on an average, 
the alkali halide mixed crystals are thoroughly dis- 
ordered, the ions around a solute ion assume con- 
figurations of minimum energy. The observed heats of 
formation can be satisfactorily accounted for only by 
taking into consideration these site energies. 

The substitution of a second ion (say bromine) in a 
host crystal (say KC1) affects the symmetry, at least 
locally. This gives rise to new features (Type D) in 
symmetry-dependent properties like the IR and 
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Raman spectra of mixed crystals. The removal of the 
centre of symmetry in some unit cells should also lead 
to optical rotation, a property not possessed by the 
pure alkali halides [56]. There is no clear experimental 
evidence in this regard although Slagle and McKinstry 
[32] refer to the observation of some optical rotation. 

This review shows that not all the physical proper- 
ties of mixed crystals have been thoroughly investi- 
gated. The properties of lattice constant, elastic 
constants, microhardness, dislocation densities, ionic 
conductivity and heats of formation have been investi- 
gated for several systems by several workers and the 
trends in the properties are clearly established. Specific 
heats and refractive index are available only for the 
KC1-KBr system. With the exception of KC1-KBr, 
only one report is available for the dielectric constants 
of mixed crystals. The results on thermal expansion 
are too sparse; as a consequence, no information is 
available regarding the Gruneisen constant. Although 
the Debye-Waller factors have been determined for a 
few mixed crystal systems, the number of compo- 
sitions studied in each system is too small. Third-order 
elastic constants have been predicted for NaC1-NaBr 
but experimental values are not available for any 
mixed crystal system. Phonon dispersion curves have 
been determined from neutron inelastic scattering 
experiments only for three mixed crystals, namely 
K05 Rb051 [97], K0. 5 Rb05C1 and KC105 Br0. 5 [98]. There 
is a lack of experimental data on the surface energy, 
thermal conductivity and magnetic susceptibility of 
mixed crystals. 
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